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SYMBOLS 

A integral  quantity  (eq. (A3)) 

c speed  of  sound 

e total  energy 

F radial flux 

f dependent variable 

G axial  flux 

II step  height, R,  - R,; or  source  of radial momentum  (eq. (Al)) 

L location  of pressure  sensor 

M Mach number 

S 

T 
- 
t 

U 

U 

V 

X 

pressure 

Reynolds  number in a  cell, P,U,A/E 

base radius 

sting  radius 

radius of the  shock-tube wall 

radial  direction 

distance  from  the  root of the base:  negative values indicate  distance  toward  the  shoulder; 
positive  values indicate  distances  toward  the  downstream  direction 

temperature 

dimensionless time, t /(Ro/c,  ) 

free-stream  velocity 

velocity in x direction 

velocity  in r direction 

axial  distance  from  the  root of the base 

iii 



y specific heat  ratio 

A dimension  of  a cell (size  of  cell, total  length/127) 

6 increment 

6ij  Kronecker  delta:  1 if i = j and 0 if i # j 

E eddy viscosity 

r ratio of the  reattachment  distnace  for y = 1.4  to  that  for  other values of y 

p density 

T time 

o . vorticity, o = - - - - e 3 
0 .Y / (CI  /Ro)  
- 

Subscripts: 

D dividing stream line 

i,j, k indexes 

o base 

R reattachment 

W wall 

00 undisturbed  free stream 

1 behind  the  primary  shock wave 

2 behind the  bow  shock wave 
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STEADY AND NONSTEADY SUPERSONIC TURBULENT AFTERBODY FLOW 

Kenneth K. Yoshikawa and  Alan A.  Wray 

Ames Research Center 

SUMMARY 

A theoretical  study  of a  supersonic  turbulent  afterbody  flow field, containing regions of sepa- 
ration,  recompression,  recirculation,  redevelopment,  and inviscid flow,  is  made  for  axisymmetric 
supersonic  steady  and  nonsteady  flow  past  a  cylindrical  base  supported by a  sting. 

The  effect of the specific  heat  ratio y of the incoming  ideal gas on the flow  properties, espe- 
cially on pressure distributions  along  the  base  and  sting  surfaces  and on  reattachment  distance, is 
investigated.  The specific heat  ratios  considered  are y = 1.2,  1.4,  and  1.667. Also, effects  of  other 
major  parameters,  such as eddy-viscosity  coefficient (or  effective  Reynolds  number)  and Mach 
number,  on  the  afterbody pressure and  reattachment  distance  are  studied  and discussed. Evolution 
of  shock-induced  flow  and  stabilization  time  are  examined  and discussed for a transient  problem. 

The  important  influence  of  the flow-field geometry, pressure distributions,  and  reattachment 
distance  on  the  aerodynamics  and  radiative  heat  transfer  for  an  atmosphere  entry  probe  in high- 
speed  flight  are  briefly  described. 

INTRODUCTION 

The  supersonic  flow  over a body  with a blunt trailing edge (afterbody  flow) is one of the  most 
complicated  problems in fluid  mechanics. It  contains a  rapid  expansion  region  around  the base or 
trailing  edge,  a turbulent  jet  mixing of the  external  flow  with a  recirculating  flow  at  the base region, 
recompression  process,  reattachment,  and finally  a  redevelopment  region  due to  the trailing  shock 
wave at  the  wake. Because this  afterbody  flow  strongly  influences  the  drag  of high-speed vehicles 
and missiles, considerable  efforts have  been  devoted to its  understanding (refs. 1-1 1). More 
recently,  two  other  important  projects involving the  study  of  afterbody  flow have  been undertaken. 
These  are  the Galileo probe to  Jupiter  and  the MX missile placed in a  long  ground  tunnel. It was 
recently  found that a  significant  amount  of  the  radiation  heating to the Galileo  entry  probe  comes 
from  the highly  recompressed gas radiation  from  the  wake  region;  this is in addition  to  the well- 
known  radiant  heating to the  forebody  surface (refs. 12-1 7).  Thus,  the design of  the  heat shield for 
the base of  this vehicle requires  a  thorough  understanding  of the wake-flow structure  from  the near- 
wake to the far-wake  regions. In  the MX missile problem,  the  characteristics  of  the blast-induced 
shock wave and  its  interaction  with  the  ground  tunnel  affect  the survivability of  the missile 
(ref.  18).  This  problem also involves the  nonsteady  turbulent flow  over the missile, including the 
wall interference  with  the  primary  and  secondary  bow  shock waves. 

Reviews of  various  methods  of analysis  applicable to the wake-flow regions  have  been  pre- 
sented in references  10  and  11.  Analytical  methods using  integral  approaches  (refs.  1, 2) and 



empirical  models  based on detailed  experimental  data  (ref. 7) have been  proposed previously. 
Recently,  mathematical  turbulence  models  have  been reviewed in  detail  in  reference  19.  The  turbu- 
lence  models,  however,  are  still not well understood.  A  simple  model  (of  constant  viscosity, con- 
stant  Prandtl  number, Pr = 1, and  constant y) is desirable to simplify the  computations;  one  such 
model  has  been previously introduced to solve the Zuminar near-wake-flow  problem with  some 
success (refs. 4, 5). 

Major  emphasis  in  this  report is on  the  development  of  a  simple  analytical  method  for  studying 
the turbulent afterbody  flow  problem.  A  simple  model, using an  appropriate value of  eddy viscosity 
and  ideal gas, is employed  for  the  fully  developed  turbulent  flow  calculations.  This  simple  model 
will be  particularly  useful in providing some physical insight into  the  problem,  for  example,  by 
examining  the  numerical  effect of eddy viscosity (or  effective  Reynolds  number)  and  specific  heat 
ratio y on  the  flow  field. 

NUMERICAL FLOW SIMULATION 

Steady  Flow 

A  schematic  of the  afterbody  flow is shown  in figure 1. The  afterbody  flow field consists  of 
several distinct  regions  and processes: The  supersonic  flow,  assumed  uniform  at  the  corner  (with  a 
thin  boundary  layer)  at Mach number M I ,  expands  rapidly  and  separates  around  the  edge  of  the 

base,  forms  a  free  shear  layer, and  goes 

recompression,  and  reattachment;  it  then 
goes through  a  compression  shock wave 

the shear-layer fluid is trapped  in  the base 
region and  creates  a  recirculating  flow 
bounded  by  a dividing streamline,  the 

_”” base wall, and  sting  surface;  the  rest  of 
the viscous flow  proceeds in far-wake 
direction. 

SEPARATION  EXPANSION RECOMPRESSION through  a  constant-pressure  jet  mixing, 
SHOCK 

EDGE OF VISCOUS and  redevelopment process. A  portion of 

REAR STAGNATION REATTACHMENT 
POINT POINT To evaluate  steady-state  flow,  two 

computer  codes,  the Weng-Chow code 

BASE FLOW SCHEMATIC 

- 

(ref.  1)  and Wray’s code  (ref. 20), were 
used,  and  some  of  their  significant  results 

Figure 1 .- Separation  and  recompression regions of axi- are  compared.  Note  that  the Weng-Chow 
symmetric  flow over a  cylindrical  step  base. code  has  a  more realistic turbulence 

model,  but  its  solution is limited to flow 
in  the  recirculation  region;  on  the  other  hand, Wray’s model is primitive  (though  it can be  modi- 
fied),  but  its  solution covers the  entire  flow region. Of the  various  fluid  dynamics  properties (pres- 
sure,  density,  temperature,  velocity,  vorticity,  etc.),  the  pressure  distribution is especially infoma- 
tive at  hypersonic  speeds since it is mainly  dependent  on  velocity  and less so on  the  other  fluid 
properties  and physical parameters.  These  codes  are  briefly  described  below. 
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In  the  WengChow  code,  the  methods  of analysis and  calculation  for  various  flow  properties in 
the  corner,  turbulent  jet mixing,  recompression,  reattachment,  and  redevelopment regions  are 
obtained  by  the  integral  method  described  in  detail  in  references 1 and 2. The inviscid flow  region  is 
described using the  method  of  characteristics.  The  Prandtl mixing-length theory is used to  compute 
the  turbulent  shear  stress in the  free  mixing  layer  under a  constant-pressure  assumption. A spatial 
variation  of  eddy viscosity - in  which the  eddy viscosity is proportional to  the value at  the  end  of 
the mixing  region times  the  local  velocity scale and to the  seventh  power  of  the  distance  from  the 
mixing  region - was employed  in  the  region  of  recompression.  Solutions  are  obtained  by  cut-and- 
trial,  adjusting  some  of the  major  parameters  between trials. (The  program was loaned to Ames 
Research Center  by  Professor W. L. Chow, University  of Illinois.) The  calculation of wall-pressure 
distribution  along  the  sting  surface was reported to show  good  agreement  with  experimental  data, 
except  that  the  computed  peak pressures  were  generally  higher and  the  gradients  much  steeper  than 
experimental values  (refs. 1, 2). 

Wray’s code is a computational  code  for  afterbody  flow, using the  compressible  Reynolds- 
averaged,  Navier-Stokes equations; it is an  explicit  method  that is second-order  accurate in space 
and  time  (unsplit,  Richtmyer  and  Morton  method). A brief  derivation  and  description  of  the 
method are given in the  appendix. A steady-state  condition is reached in about 10,000 steps; it 
requires  about  20 min on  the  ILLIAC  IV.  The  computational  domain  considered is about 4 times 
the  body  radius  in  the radial direction  and  about  6.5  times  the  body  radius in the  streamwise direc- 
tion.  Emphasis is on  constructing  the overall flow field around  the  afterbody. An adiabatic base and 
sting  (and slip-flow condition  for  the  shock-tube wall when wall interaction is considered)  are  used. 
A simple  physical model  has  been  incorporated  in  the  calculations to  determine  the  qualitative 
effects  of  the  parameters  on  the flow-field 
solutions;  the  model  consists of an  ideal gas 
(constant y), constant  eddy viscosity, and 
unit  Prandtl  number (Pr = 1) .  

The essential features  and  results  of  the 
present  calculations, using Wray’s code, are 
described in the following sections and  are 
shown in figures 2-6. 

Effect o f  cell Reynolds number- The 
effect  of cell Reynolds  number [ R ]  , or 
inverse dimensionless eddy  viscosity, on the 
flow field is shown in figures  2 and  3.  Shown 
in  figure  2  are computed pressure contours 
and  streamlines in the  afterbody region. 
Conditions  for  this case are [ R ]  = 100, 
y = 1.2, MI = 2.38,  and RJR,  = 112. 

Conical  expansion  and  recompression 
waves can be clearly  identified  in fig- 
ure  2(a).  There  are large constant-pressure 
regions  behind the  cylindrical base and 
downstream  of the recompression  shock 
wave. The slight  variation  of  the  pressure 

[ R ]  = 100 

0 1 2 3 4 5 6 
xJR, 

(a) Pressure contours. 

I I 

0 REATTACHMENT POINT 
OR STAGNATION  POINT 

xJR, 

(b) Stream  lines,  exponential spacing. 

Figure 2.- Afterbody flow solution: M I  = 2.38, 
RJR, = 112, [ R ]  = 100, and y = 1.2. 
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[R] = 25 

0 1 2 3 4 5  6 
xIR,  

(a)  Pressure contours. 

between  the  base  and  the  recompression 
shock  indicates a  possibility  of  boundary- 
layer-like flow in that region. The pressure 
distribution  along  the  sting  surface  shows 
that  the pressure  buildup is  gradual;  after  the 
peak value  is reached,  the  pressure decreases 
very  slowly to the free-stream value. Shown 
in figure  2(b) are  streamlines  (with  exponen- 
tial  spacing);  a pattern  of  the  recirculatory 
flow  as well as the dividing  streamline 
through  the  rear  stagnation  point  (reattach- 
ment  points  are  marked  by  circular  symbols) 
can  be  seen. 

I 

0 REATTACHMENT POINT 
OR STAGNATION POINT I 

0 1 2 3 4 5  6 
x I R ,  

(b) Stream  function,  exp (I)). 

Figure 3.- Afterbody flow solution: M I  = 2.38, 
R,/R, = 1/2, [R]  = 25,  and y = 1.2. 

.4 I I I I I I 
0 2 4 6 8 10  12 

xIH 

(a) The  effect of [ R ]  on pressure distribution along divid- 
ing stream  line: M I  = 2.09, Y = 1.67, R,/R, s 1/2. 

Figure 4.- Pressure distributions. 

Pressure contours  and  streamlines  for a 
larger eddy viscosity ([R J = 25) are  shown 
in  figure 3 for  the  same values of y, M I ,  and 
RJR, as  used  in  the previous case. The base 
pressure  below the  comer is drastically 
reduced (fig. 3(a)).  Strong  vorticity  and  tur- 
bulence  carry  momentum  around  the  corner 
and  delay  the  boundary-layer  separation, 
that is, separation  occurs below the  comer, 
decreasing the size of  the wake and  the 
reattachment  distance, as  can  be  seen  from 
figure 3(b).  This  delay  of  boundary-layer 
separation  has  been observed in numerous 
experimental  investigations (e.g., ref. 9). 
Some  numerical  analyses  for  laminar  two- 
dimensional  flow  behind a wedge or  step 
(refs. 4,  5) also pointed  out  this  behavior. 
The  separation  delay will be discussed fur- 
ther in a  following  subsection  (Vorticity 
Distribution).  The  steep pressure  gradient 
near  the  comer suggests that  the  boundary- 
layer  character  of  the  flow  along  the  corner 
vanishes  as the  flow  expands.  These  results 
simply indicate  the  influence  of larger eddy 
viscosity. In our  report,  however,  for sim- 
plicity we assume  a  constant  eddy  viscosity. 

The  effect  of [R J on pressure  distribu- 
tions is shown in figures 4-6. Pressure  distri- 
butions  on  the dividing  streamline,  particu- 
larly  in the  vicinity of the  comer, vary 
significantly with  the value of [R] , as  shown 
in figure 4(a).  The  results  for  other values of 
y show  pressure  variations  similar to those 
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for "y = 1.67.  Note  that  the  pressure  distribu- 
tion along the  sting  surface @w) does  not 
vary as  much  with [ R ]  as  that  along  the 
dividing  streamline @D). Also note  that a 
steep pressure gradient  appears  near  the 
comer  for  the small  value of [Rl ; this is  also 
clearly  shown in figure  3(a). 

The  concept  of  constant-pressure  mix- 
ing, after  the  flow  separation,  has  been  sup- 
ported  by  many  authors  for  lower  super- 
sonic  speeds, that is, M I  < 3 (e.g., refs. 1-6, 
10,  11,  13).  In  order to obtain relatively 
constant pressure p~ in  the base  mixing 
region and also to  keep  the base  pressure 
close to this  pressure (i.e., pg z pg), an 
appropriate value  of [ R ]  has to  be selected. 
The value that satisfies these  conditions is 
[ R ]  = 75. Pressure distributions  of pg and 
p w  for [ R  1 = 75 are  shown in figure 4(b) 
where,  as  can  be  seen, pg in the  turbulent 
jet mixing  layer is nearly constant  from 
x / H  = 0 to x/H x 2.0, ahead  of  the  reattach- 
ment  point,  and is also  nearly  equal to  the 
base pressure (note  that pg becomes  identi- 
cal to p w  after flow reattachment). 

The  numerical  calculations  for  other 
values of y (i.e., y = 1.2  and  1.4)  show simi- 
lar  results and,  thus,  support  the  choice  of 
[Rl Z 75.  Presented  in figure 4(c) are pres- 
sure  distributions  for a  higher Mach number 
( M I  = 4).  The  numerical  results  show  that 
the  effect  of [ R ]  on pressure  distributions is 
relatively  small for  higher Mach numbers, 
but is  somewhat  larger  for  lower Mach num- 
bers. Thus, base  pressure is weakly depen- 

.4 I I I I I I J 
0 2 4 6 8 10  12 

xIH 

(b)  Pressure distributions  for  the effective [ R ]  = 75 
MI = 2.09, y = 1.67, RSfR, 112. 

1.6 r 

1.2 I 

" 
-1 1 3 5 7 9 11  13 

s/n 

(c) The  effect  of [ R ]  on pressure distributions  at  higher 
Mach number.M1 = 4.0, y = 1.4, Rs/R, 112. 

Figure 4.- Concluded. 

dent  on [ R ]  (see also  refs. 1,  10).  It is  also noted  that pressure varies rapidly  along the dividing 
streamline  and  that  constant-pressure  mixing can no longer  exist  in  this  high-shear  flow  region  for 
higher Mach number.  Note  that  the  feature  of  constant wall pressure (below  the  separation  point) 
still  exists  in the base  flow  region. 

In figure  4(c)  negative  values on  the abscissa indicate  locations  between  the  corner (s/H = -1) 
and  the  root  of  the base (s/H = 0). 

Effect of specific  heat  ratio- For  hypersonic  entry  into a  planetary  atmosphere it is known 
that  the specific heat  ratio  of  the  high-temperature real gas will change  significantly during  the 
flight;  therefore,  the  examination  of  the  effect  of "y on  the  flow field is important.  Three  different 
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I A 1.67 xR = REATTACHMENT DISTANCE 

I I I I I I I 
0 2 4 6 8 10  12  14 

( - sIH 

(a) M1 = 2.09,R,/Ro = 112, and [R] = 75. 

1.4 r 

- 2 ' 0  2 4 6 8 10 12  14 
- 

5 * slH 

(b)Ml = 4.0, [R] = 75, and Rs/Ro = 112. 

Figure 5 .- The  effect  of 7 on  pressure  distributions. 

values of constant y are used  in the calcu- 
lations in order to see the  effect  of y on 
the  pressure  distributions. 

A rather  good  correlation of  pressure 
distributions  for 7 = 1.2,  1.4,  and  1.67 is 
obtained  in  the  form  of  a  reduced  coordi- 
nate,  as  shown  in  figure 5(a). The  flow  con- 
ditions  for  the cases are M1 = 2.09 and 
Rs/Ro = 1/2.  The  factor in the abscissa is 
the  ratio of the  reattachment  distance  for 
7 = 1.4  to  that  for  a given y. Experimental 
correlation  of  pressure  distributions  in  the 
reduced  form  have  been  demonstrated  in 
reference 6 for air,  and  seem valid for  a rea- 
sonable  range  of Rs/Ro. The  detailed  effect 
of the  ratio of the  sting radius to  the  body 
radius, Rs/Ro, on  the pressure distributions 
and reattachment  distance  are  shown  in 
references  1  and 8, based  on theory and 
experiments in air. It should  be  noted  here 
that  significant  overshoot pressure, following 
the  flow  reattachment, is observed for axi- 
symmetric  flow  (see also fig. 4), but  no over- 
shoot is seen in two-dimensional  flow 
(refs. 6, 8). 

The  effect of y on  the pressure distri- 
bution  at  a  higher Mach number, M, = 4.0, 
is shown in figure 5(b).  The  results clearly 

indicate  that  the base pressure is strongly  dependent  on  both  flow Mach number M1 and  specific 
heat  ratio  of  the gas y, that is, the base pressure ratio is significantly  reduced  by increasing M, and 
by decreasing y. The  maximum pressure ratio,  Pmax/P1,  however, is relatively independent of  these 
parameters (PmaxrP1 slightly increases as M1 increases).  Consequently,  pressure  distributions in the 
reduced  coordinate  do  not  show as good  a  correlation as for  the  lower Mach number case in the 
region of  near-wake, but retain  good  correlation in the far-wake region.  In figure 5 negative abscissa 
values indicate  the  locations  from  the  comer (s/H = - 1 )  to  the  root of the base (s/H = 0). 

Vorticity distributions- Vorticity is plotted in reduced  coordinate in figure 6 for  the higher 
Mach number  condition.  The  vorticity along the dividing stream  line (wg)  and along the base-to- 
sting  surface (ww) is presented.  Vorticity is large around  the  comer.  Three  zero  vorticity  points 
(w = 0), one  just below the  corner  (an evidence of  the  delayed  separation  point),  one a t  the base 
(rear  stagnation  point),  and  one  at  the flow reattachment  location  are  present.  Note  that  the  vortic- 
ity wD in figure 6 should  start  from  the  origin,  that is, w~ = 0 at s = 0. The  vorticity  distributions, 
wD and ww, become  identical  after  flow  reattachment.  In  contrast to  the pressure distributions in 
figure 5(b), good correlations  of  the  vorticity  distributions  exist in the  region of  recirculation  of 
near-wake  flow. The  vorticity  along  the  sting  and base surface is positive inside  the  recirculation 
region,  corresponding to reverse flow;  along  the dividing stream  line  outside  the  recirculation region 
(along  the  surface  before  the  separation  and  after  the  reattachment)  it is negative, corresponding to 
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flow  in  a  streamwise  direction. Note  that 
strong  vorticity is regenerated  as the flow 
moves  past the  reattachment  point. 

Other general  physical  results are 
described in the following  section - General 
Results  and Discussions. 

Nonsteady  Flow 

A shock tube is  a  useful  facility for  the 
experimental  study  of high-speed entry gas 
dynamics  (ref.  2 1). In  particular, shock-wave 
interaction  with walls and  projectiles  inside  a 
shock tube  or in a  long  ground  tunnel is an 
important  subject  of investigation for  heat 
protection  and safeguarding of  space vehicles 

5 /  ww 

ww ALONG THE  STING SURFACE 

WD ALONG THE  DIVIDING STREAMLINE 

c . 3 3 ‘1 h . 6 7  2.-.- .-.-.-. 

-5 “D 
‘.L “”” --- 

1.2 

-10 
-2 0 2 4 6 8 10  12 14 

Figure 6.- The effect of y on vorticity  distributions: 
M I  = 4.0, [R]  = 75, and R,fR, = 1/2. 

and missiles (ref.  18).  Numerous  reports  have  presented  various  features  of  numerical  calculations 
for  the inviscid shock-induced  flow, that is,  supersonic  wake  flow  (ref.  22), shock-wave interaction 
with  the cross-flow (ref.  23), and  flow patterns of diffracting weak shock waves around  corners 
(ref.  24). The  important  nonsteady flow  characteristics  associated  with  a  shock-tube  test,  such as 
actual  test  time,  flow  stability  time,  and  flow  reflection  time,  are  not well understood,  except  that 
the reflection  time  (time for  the  shock wave to travel to  the end wall and  return) is usually much 
longer than  the  test  time.  In  this  section  the  effects  of  turbulent flow on  the  transient pressure,  flow 
stability  time,  and  some  effects  of y on  the pressure distribution  in  the  shock-tube  flow will be 
briefly  described. 

Shock-wave-induced base flow- A sketch  of  the  initial  shock wave passing over  a sting- 
supported cylindrical base is shown  in figure 7.  The primary  shock wave at Mach number M ,  dif- 
fracts at  the  corner and passes to  the sting 
surface,  developing the  turbulent shear 
layers. The principal  results for  the  transient 
phase  of  flow, from  nonsteady to steady- 
state  conditions,  are  shown in figure 8 for 
the  condition of M ,  = 6, y = 1.4,  and 
Rs/R, = 1/3.  Figure  8(a) shows the  density 
contours  and pressure distribution  along  the 
sting  surface  shortly  after collision of  the 
diffracted  shock wave with the base line 
(7 = 0.37)  and  after  collision  with the sting 
surface ( F =  0.74). The pressure distribution 
at i = 0.37 is  still undisturbed, since the 
shock-wave front  has  not reached the  bot- 
tom  of  the base surface  (or  sting  surface). 
Strong  overshoot  pressure, due to shock 
wave reflection or diffraction, develops Figure 7.- Geometry of shock wave  passing  over a 
immediately  and  reaches  a  maximum  value cylindrical step base supported by sting. 
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x/R, 

(a) Density contours  at ?= 0.37; 
wall  pressure at 7 = 0.74  and  0.37 
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//////////////// , 
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2 
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-2 a 
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0 

/ =  1.49 

I/- t = 1.09 

/ 

" - 

WALL PRESSURE 

L 
4 6 

(b) Density contours  at i= 1.49; 
wall  pressure at r=  1.09  and 1.49. 

Figure 8.- Evolution of density  and pressure distributions  for  shock-induced base flow: 
M,=6,Rs/R,=1/3,  [R] =75 ,andy=1 .4 .  

of p / p ,  2.9 (where p ,  is the pressure  behind the  incident  shock)  at i= 1.0, as  shown  in  the subse- 
quent figures. The  major  portions  of  flow field follow  the inviscid flow  character following the 
conical  expansion  around the  corner,  until  flow  time  reaches f =  1 .O; no significant  damping or fluc- 
tuation  due to viscous effects  appears  in  the  pressure  distributions  (see e.g., refs. 22, 23) .  Strong 
vorticity is generated as the  shock  moves  past  the  comer.  The  starting  vortex moves downstream, 
and  its  interaction  with  the  sting  becomes  important,  as can be seen in figure 6. 

The  maximum  pressure  buildup  behind  the  shock  occurs  at a  characteristic  time at 7 = 1 .O 
without regard to  the gas property  (or y) used in the  numerical  calculations.  Radiant  luminosity 
believed to  be  due  to  this  peak  pressure  has  been observed in reference  15. 

Flow stability time- The base  pressure ratio @ / p l  at x /Ro  = 0.0) also  varies with  time;  this 
effect can be seen in figure 8. Time  history  of  the base  pressure  in  terms  of the reduced  time is 
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shown in figure 9. The first  pressure  peak 
(impact  pressure)  occurs  immediately after 
the diffracted  shock wave impinges upon  the 
sting  surface at  the  bottom  of  the base,  and 
the base pressure then  builds  up again,  with 
some  fluctuations, to the  asymptotic value. 
We arbitrarily  define  flow  stability time T 

by 

PB(T)/PB(M) = 0.90 (1) 

From several numerical  calculations, the fol- 
lowing  empirical  relation is established for 
the case of Rs/Ro = 1/3, 

7 6 1 *(Ro/cl )/(PI /P,> (2) 

The flow  stability  time will be  dependent  on 
the  ratio  of  the  sting radius to  the  body 
radius, RJR,; it will be  shorter when R,/R, 
is smaller  since interaction  with  the  bound- 
ary  layer is less. 

It is possible that  the flow  stability 
time given by equation  (2) can be longer 
than  the  actual flow  test time, since the 
flow  test  time  can be significantly shortened 
by  the  shock-tube  boundary  layer  growth 
and by the  broadening of the mixing regions 
across the  contact  surface in hypersonic 
shock  tube. I t  is possible that  the  steady- 
state flow  may not be established in many 
test cases. 

'r WALL PRESSURE 

(c) Density contours  at t= 1 15 ; wall  pressure at 
t= 2.88 and 115. 

Figure 8.- Concluded. 

Shock-tube flow simulations- Typical  results  of  the  shock-tube  flow  simulation (7 >> 1) are 
shown in figure 10.  The pressure distributions along the sting  surface  are plotted  in  this figure for 
three  different gases (Le., y = 1.2,  1.4,  and  1.67)  for M ,  = 14.0 and Rs/Ro = 1/3.  The large differ- 
ences  in base pressure ratios  are  due to the  different values of  the specific heat  ratio y, which  also 
result in different  flow Mach numbers M1 ( M I  = 2.80,  1.86,  and  1.33  for y = 1.2,  1.4,  and  1.67, 
respectively);  however, the peak  pressure ratio Pmax/P1 does  not change  significantly. The rapid 
pressure  decay  shown for a monatomic gas (y = 1.67) is due  to shock-tube wall interaction (reflec- 
tion of the  expansion wave from the shock-tube wall), a  result  of the lower  supersonic  speed  of 
M I  = 1.33. The wall-interaction effect  on pressure for  other gases (y = 1.2 and  1.4)  would appear 
further  downstream;  it  cannot  be seen  in these figures  because the Mach numbers M l  are too high. 
Validity  of  the  concept  of  constant-pressure mixing  in the recirculation  region  (below the separa- 
tion  point)  for various y and Mach numbers M1 is well substantiated  in the figure, that is, the 
constant-pressure  mixing and  constant base-pressure assumptions seem to be valid for y 2 1.2  or  for 
M I  < 3.0. 
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TIME, t/(R,/cl) SlH 

Figure 9 .- Transient base pressure and  flow  stability Figure 10.- Pressure distributions  and wall interference 
time:  boundary  conditions same as in figure 8. (shock-tube  flow  simulation): M,= 14, R,/R, =1/3, 

and R,/R, = 4. 

GENERAL  RESULTS AND DISCUSSIONS 

Important physical  results,  such as the  ratio of the neck  pressure (maximum pressure) to  the 
base pressure, pmax/pl , and  reattachment  distance X R ,  are  presented  and discussed in  this  section. 
(Note  that  Pmax/P 1 = 07max/Pg) @B/P 1 1-1 

Comparison  of the  Ratio  of Base Pressure to Neck  Pressure 

This  pressure ratio is important  in  the  estimation of the  magnitude of  radiation  heat  from the 
wake  (see, e.g., refs. 15,  16).  The  computed peak-to-base (or neck-to-base)  pressure  ratios  are  shown 
in figure 1 l(a). Since the range of sting-to-body  radius ratio in this  report is limited to RJR, = 0.33 
and 0.5, the radius  effect on base pressure  is  relatively minor. Significant effect  of flow Mach num- 
ber and y on pmax/pl is noted as M1 exceeds 3.0. One  can,  therefore,  expect very high pressure 
ratios  for  the  hypersonic  flow  where dissociation  and ionization  of  the gas begins to take place, 
that is, for a gas of  low y. Also  shown in the same  figure, with solid  black  symbols,  are the results 
obtained  by using the  code  of  reference  1.  An empirical  relation  derived for y = 1.4 is  presented  in 
the figure as a dotted  line, which agrees well with  the  results  of  reference 1. 
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Figure 1 1 .- Wake  pressures. 

Base Pressure 

Base pressure  ratios, pB/pl, calculated by  the  present  code  and  by  that of reference 1, are 
shown in figure 1 l(b)  (numerous  experimental  and  theoretical  data  are also presented  in  ref. 7). 
Significant  effects of y on  the  ratio is noticed  as Mach number M ,  increases. The large effect  of y 
on  the peak  pressure ratio  shown  in figure 1 l(a) is due mainly to the  effect of y on base  pressure 
since pmaX/p1 is relatively unchanged (see figs. 4, 5). The  result shows that base pressure will be 
significantly  lower  when y is lower, that is, when  dissociation or ionization  takes place in  hyper- 
sonic  flight. Note  that  the  ratio of  sting  radius to body  radius  is also limited to RJR,  = 0.33 
and 0.5 in the figure (the  effect of body radius on base pressure, as mentioned  before,  is  demon- 
strated  in references 1 and 8 for lower  supersonic Mach number). 

Reattachment Distance 

Reattachment  distance  of  the  afterbody,  shown in figure  12,  is an  important  characteristic 
length. It provides an  approximate  location  of  the  vertex  of  recompression  shock  and,  thus, gives an 
appropriate view factor  for  the  wake  radiation involved with  the  high-temperature gas. Also shown 
in the figure is an empirical  relation for  the  reattachment  distance  for y = 1.4. A  few  computed 
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Figure 12.- Flow reattachment distance as a  function 
of Mach number. 

viscous flow  over  a blunt  forebody  at  supersonic  or  transonic  speeds (e.g., refs. 25, 26).  These  codes 
can  be incorporated  with  the  present  afterbody  code  in  order  to see the  effect  of  a  forebody. 

Code  Limitation 

Besides the flow-model  limitations  mentioned  earlier (i.e.,  ideal gas, constant  turbulent  eddy 
viscosity,  etc.),  there is another  code  limitation.  Solution of the shock-induced  flow  (nonsteady 
shock-tube flow  and steady  wind-tunnel  afterbody  flow) involves a  steep pressure jump across the 
shock wave (including the recompression  shock wave). These  discontinuities  often cause numerical 
problems.  The relatively gradual  pressure rise across the  recompression  shock wave shown  in fig- 
ure 4, and across the  diffracted  shock wave shown in figure 8, can be  attributed  to  this  code  limita- 
tion. (However, higher eddy viscosity also causes a  gradual  pressure rise.) For example, pressure dis- 
tributions  calculated  by the  code  of  reference 1  show  much  steeper  pressure rises than  the  present 

results  from  reference 1 are also included  in 
figure 12, but  the results  show  strong  depen- 
dence on 7 and  fluctuate  with a wide varia- 
tion  (the  method,  however, is not  expected 
to be  applicable  for  higher Mach numbers). 
The  present  results  indicate  rather  good 
correlation,  whereas  those  from  reference 1 
do  not. 

Forebody  Flow  Effect 

The  presence  of  a  forebody  with 
accompanying  bow  shock wave may signifi- 
cantly  affect  the  afterbody  flow  solution. 
For  example,  the  trend  of  experimental 
pressure  distributions  downstream  of  the 
separation  point  for  various  forebody  shapes 
(and  sting  radius to body  radius  ratio)  has 
been  shown  in  references 6 and 8: distinct 
overshoot  pressure, as shown  in  previous 
figures, results  for  the  long  cylindrical base 
flow,  and  no significant overshoot  pressure 
is reported  for  the  particular  forebody pre- 
sented.  Note also that  the result  of  two- 
dimensional  flow (or RJR, s 1 .O) does  not 
show  the  overshoot pressure. The  detailed 
study  of  the  forebody  effect  on  the  after- 
body flow is, therefore, desirable. There are 
a  number  of  timedependent  finite- 
difference Navier-Stokes codes  that have 
been  developed to calculate  the  turbulent 

results at  the beginning of  the  recompression  region, 
results  of  reference 1,  except  that  the  later  portion  of 

and the  experiments seem to support  the 
the  experimental pressure rise is much  more 
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gradual  than  that  predicted  by  reference 1 .  
Therefore,  further  examination  and  improve- 
ment  on  this  subject  may  be essential. 

Shock-Tube  Experiments 

To demonstrate  the general trend  of 
unsteady  afterbody  flow,  a  typical  result  of 
a  shock-tube  experiment  for  transient pres- 
sure  distribution is shown  in figure 13. The 
test  model is a  hemispherical  body sup- 
ported  by  a  sting,  with  a  ratio  of  sting  radius 
to  body radius  of RJR, = 1 /3 ; the  test gas is 
air  at  a shock-wave  Mach number  of  about 
M ,  = 14. As noted in the  previous  section, 
the  forebody  shape  alters  afterbody pressure 
distributions, especially after  the  reattach- 
ment  point, and for  the  demonstration  pur- 
pose we choose  transient pressure  near the 
base (x/H = 1 .O), which  seems to be less 
affected.  Air  at  this  test  condition is par- 
tially  dissociated,  and  two  numerical  calcula- 
tions  (one  for y = 1.2 and  the  other  for 
y = 1.4) are  shown for  the  comparison.  After 
a  sharp pressure spike,  due to the diffracted 
shock wave compressing and  interacting  with 
the  boundary  layer  near  the  surface,  the 
transient  pressure  gradually  increases  toward 
the  asymptotic values of p l ,  the  steady-state 
pressure  behind the  primary  shock wave. In 
this  test  condition we estimated  that  the 
experiment  test  time  (300-400  psec)  and 
the flow  stability  time (T = 300 psec  for 
y = 1.4,  and T = 400 psec  for y = 1.2) were 
comparable.  However, it could  be  that  the 
flow  does not reach  the  steady-state  condi- 
tion  before  the mixing  region of  the  inter- 
face arrives at  the  location  of  the pressure 
sensor.  Note again that  the  numerical calcu- 
lation  of  transient pressure is based on the 
infinitely  long  forebody  and  thin-boundary- 
layer  assumptions;  agreement  of the  test 
data  and  numerical  calculations  is not 
emphasized  here. 

The  extremely  strong  and  nonsteady 
pressure induced  by  the  blast  shock 

'r 
=-, 
p' 
0 

0 

(a) y = 1.2. 

c 

" I k -  
50 usec 

0 + 10  20 30 40 
TIME, t/(R,/cl) 

(b) y = 1.4. 

Figure 13.- Experimental  and  theoretical  transient 
pressure: M, = 14, and RJR, = 113. 
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wave, which  hammers  the  body  and  thus  affects  stability  and  safety  of  the vehicle, should  be 
noted. 

CONCLUDING REMARKS 

A computer  code  and  solutions of steady  and  nonsteady  supersonic  turbulent-wake  flow have 
been obtained  under  simple  flow  model  assumptions.  The  emphasis  of  the  study was on examining 
the basic  characteristics  of  the  afterbody  flow  field to  obtain  essential  flow  information  for the cal- 
culation  of  radiation  heat  from  the  wake region. Solution  of  the  entire  afterbody  flow covered the 
base through far-wake  regions;  within the  framework  of  the  present  assumptions,  the  solution 
results in the  following general  conclusions: 

1 .  There is a  steep pressure jump  (thus, high temperature  jump)  across  the  recompression 
shock wave (which  can  be  correlated  for  low Mach numbers, M I  < 3). 

2. Relatively  large  constant-pressure  zones exist. 

3. There is a  gradual  decay  of the pressure distribution in the far-wake  region (thus, slow 
decay  of  temperature  and  radiation  intensity). 

4. A conical  shape  of  high-pressure  zones  (thus,  high-temperature  radiation  sources)  is  an 
appropriate  geometry  for  calculating  radiation  heat  from  the  wake region. 

For  nonsteady  flow,  the  following  results  are  noted 

1.  There is a  very  high induced pressure on  the  sting  surface,  which is  also substantiated by 
experiments (several times  higher than p 1  , steady-state  pressure  behind  the  incident  shock wave). 

2. Delayed separation,  rear-stagnation,  and  reattachment  points  can be identified by the vor- 
ticity  distribution  curve. 

3.  Flow  stability  time may be  comparable  with flow test  time. 

However, further  examination  of  the  wake  flow - using improved  models  that  include,  for 
example,  the  effects  of real gases, variable turbulent viscosity,  presence  of forebody  flow,  and 
improved  resolution  across  shock waves - is essential to  the  accurate  prediction  of  radiation  heat 
and heat  protection  of  a very high  speed entry  probe,  such as that  for  the Galileo mission to  Jupiter. 

Ames Research Center 
National Aeronautics  and  Space  Administration 

Moffett  Field,  California 94035, July  23,  1980 
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APPENDIX 

DESCRIPTION OF WRAY’S CODE 

The Wray code solves the Navier-Stokes equations in an  axisymmetric  geometry  by  means  of  a 
finitedifference  algorithm of  second-order  accuracy  in  space  and  time  for  the inviscid terms  and 
second-order  accuracy  in  space  and  first-order  accuracy  in  time for  the viscous and  heat  conduction 
terms  (ref.  20).  The  method  of  differencing  enforces  exact  numerical  conservation  of mass, momen- 
tum,  energy,  and  angular  momentum. 

We can  write the Navier-Stokes equations  in  the  following  shorthand  notation: 

where f j  = ( p ,  e, pu, pv) is  an array of the  dependent variables: mass density,  total energy density, 
radial  momentum  density,  and  axial  momentum  density. Fi and Gi are  the  corresponding  radial  and 
axial flux  densities.  The  term H ,  which occurs  only  in  the  radial  momentum  equation,  constitutes 
a  source of radial momentum  due to geometric  effects in the  axisymmetric  coordinate  system.  The 
operator cSj3 is the  Kronecker  delta ( t i j 3  = 1 if i = 3, zero  otherwise). 
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where 

The  integrals  in  equations (A2) and (A3) are  approximated  by  the  trapezoidal  rule.  This  constitutes 
a so-called “finite volume’’ approximation. 

The f i  at a  time t are  first  advanced  inviscidly to a  time t +  1/2 6 t  at  the cell centers ( r j+  1/2 6r, 
Xk + 1/2 ax), and  then  the inviscid flux  densities,  as  computed at  those  points,  combined  with  the 
viscous fluxes  as  computed  at  time t ,  are  used to advancefi to time t + 6 t .  

Boundary  conditions used  are as follows. At  the  incoming  boundary,  where  the  flow is super- 
sonic, all dependent variables  are  specified  as  desired. At  the  downstream  (outflow)  boundary,  a 
zero  gradient (af i /ax = 0)  condition is used;  this  condition is also used on  the  top  boundary  (as 
af,/ar = 0 )  in the case of  no  outer wall. If there is an  outer wall,  slip boundary  conditions are  used 
(v = 0) ;  on  the  body  surface  (and  sting  surface,  if  present),  a no-slip, adiabatic  condition is used. 
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